206 research outputs found

    Data centric trust evaluation and prediction framework for IOT

    Get PDF
    © 2017 ITU. Application of trust principals in internet of things (IoT) has allowed to provide more trustworthy services among the corresponding stakeholders. The most common method of assessing trust in IoT applications is to estimate trust level of the end entities (entity-centric) relative to the trustor. In these systems, trust level of the data is assumed to be the same as the trust level of the data source. However, most of the IoT based systems are data centric and operate in dynamic environments, which need immediate actions without waiting for a trust report from end entities. We address this challenge by extending our previous proposals on trust establishment for entities based on their reputation, experience and knowledge, to trust estimation of data items [1-3]. First, we present a hybrid trust framework for evaluating both data trust and entity trust, which will be enhanced as a standardization for future data driven society. The modules including data trust metric extraction, data trust aggregation, evaluation and prediction are elaborated inside the proposed framework. Finally, a possible design model is described to implement the proposed ideas

    Stochastic Processes and the Dirac Equation with External Fields

    Get PDF
    The equation describing the stochastic motion of a classical particle in 1+1-dimensional space-time is connected to the Dirac equation with external gauge fields. The effects of assigning different turning probabilities to the forward and the backward moving particles in time are discussed.Comment: 9 pages, 1 figure, scalar parts eliminate

    Advances in Plastic Forming of Metals

    Get PDF
    The forming of metals through plastic deformation comprises a family of methods that produce components through the re-shaping of input stock, oftentimes with little waste. Therefore, forming is one of the most efficient and economical manufacturing process families available. A myriad of forming processes exist in this family. In conjunction with their countless existing successful applications and their relatively low energy requirements, these processes are an indispensable part of our future. However, despite the vast accumulated know-how, research challenges remain, be they related to the forming of new materials (e.g., for light-weight transportation applications), pushing the boundaries of what is doable, reducing the intermediate steps and/or scrap, or further enhancing the environmental friendliness. The purpose of this book is to collect expert views and contributions on the current state-of-the-art of plastic forming, thus highlighting contemporary challenges and offering ideas and solutions

    Blockchain-based Perfect Sharing Project Platform based on the Proof of Atomicity Consensus Algorithm

    Get PDF
    The Korean government funded 12.8 billion USD to 652 research and development (R&D) projects supported by 20 ministries in 2019. Every year, various organizations are supported to conduct R&D projects focusing on selected core technologies by evaluating emerging technologies which industries are planning to develop. To manage the whole cycle of national R&D projects, information sharing on national R&D projects is very essential. The blockchain technology is considered as a core solution to share information reliably and prevent forgery in various fields. For efficient management of national R&D projects, we enhance and analyse the Perfect Sharing Project (PSP)-Platform based on a new blockchain-based platform for information sharing and forgery prevention. It is a shared platform for national ICT R&D projects management with excellent performance in preventing counterfeiting. As a consensus algorithm is very important to prevent forgery in blockchain, we survey not only architectural aspects and examples of the platform but also the consensus algorithms. Considering characteristics of the PSP-Platform, we adopt an atomic proof (POA) consensus algorithm as a new consensus algorithm in this paper. To prove the validity of the POA consensus algorithm, we have conducted experiments. The experiment results show the outstanding performance of the POA consensus algorithm used in the PSP-Platform in terms of block generation delay and block propagation time

    IPTV 2.0 from Triple Play to social TV

    Get PDF
    International audienceThe great success of social technologies is transforming the Internet into a collaborative community. With a vision of IPTV 2.0, this paper presents our research work towards the exploitation of social phenomena in the domain of TV. Based on the advantage of IP Multimedia Subsystem (IMS) service architecture, the current IPTV service is extended from two aspects: TV-enriched communication and sociability-enhanced TV. Two applications namely TV Buddy and Social Electronic Program Guide (EPG) are proposed to demonstrate them respectively. Finally, we developed a prototype system on Ericsson IMS Software Development Studio (SDS)

    Deep Sensing: Inertial and Ambient Sensing for Activity Context Recognition using Deep Convolutional Neural Networks

    Get PDF
    With the widespread use of embedded sensing capabilities of mobile devices, there has been unprecedented development of context-aware solutions. This allows the proliferation of various intelligent applications, such as those for remote health and lifestyle monitoring, intelligent personalized services, etc. However, activity context recognition based on multivariate time series signals obtained from mobile devices in unconstrained conditions is naturally prone to imbalance class problems. This means that recognition models tend to predict classes with the majority number of samples whilst ignoring classes with the least number of samples, resulting in poor generalization. To address this problem, we propose augmentation of the time series signals from inertial sensors with signals from ambient sensing to train deep convolutional neural network (DCNNs) models. DCNNs provide the characteristics that capture local dependency and scale invariance of these combined sensor signals. Consequently, we developed a DCNN model using only inertial sensor signals and then developed another model that combined signals from both inertial and ambient sensors aiming to investigate the class imbalance problem by improving the performance of the recognition model. Evaluation and analysis of the proposed system using data with imbalanced classes show that the system achieved better recognition accuracy when data from inertial sensors are combined with those from ambient sensors, such as environmental noise level and illumination, with an overall improvement of 5.3% accuracy

    Application of homogeneous potentials for the modeling of the Bauschinger effects in ultra low carbon steel

    Get PDF
    In this work, an approach is proposed for the description of the plastic behavior of materials subjected to multiple or continuous strain path changes. In particular, although it is not formulated with a kinematic hardening rule, it provides a reasonable description of the Bauschinger effect when loading is reversed. This description of anisotropic hardening is based on homogeneous yield functions/plastic potentials combining a stable, isotropic hardening-type, component and a fluctuating component. The capability of this constitutive description is illustrated with applications on an ultra low carbon steel sheet sample deformed in three-stage uniaxial loading with two load reversals [1].ope
    corecore